i

A function is one-to-one if two input values never give the same output; or if no element of the co-domain has more than one que-image.

(ef
$$f: A \rightarrow B$$

 $\forall x, y \in A, x \neq y \longrightarrow f(x) \neq f(y)$

for proof 5, use contrapositive definition (equivalent definition)

2 IA = IB

one-to-one proof (concret)
let f:
$$2 \rightarrow 2$$
 and $f(x) = 2x+1$. Prove f is one to one.
let xin $\in \mathbb{Z}$. And suppose $f(x) = f(y)$. (hypomens of contrapos.
Then, $2x+1 = 2y+1$. (using defin of f).
 $2x = 2n$
 $x = y$ (conclusion of defin one-to-one)
So f is one-to-one.
one-to-one proof (abstract with composition):
For sets A,B_1C and for functions $f:A \rightarrow B$, $g:B \rightarrow C$;
if f and g are one-to-one, then $(g \circ f)$ is also one-to-one.
let A,B_1C be set and let $f:A \rightarrow B$, $g:B \rightarrow C$
 $x = y - (x - x) - cone, then $(g \circ f)$ is also one-to-one.
Suppose f and g are one-to-one, then $(g \circ f) = g(f(y))$
Since g is one-to-one, it must be the case $f(B) = f(G)$.
Then, since f is also one-to-one, it must be case that $x = y$.
So g of is also one-to-one.$